Transparency and Quality Assurance Procedures in Physics Based SDB Production

Role of SDB, and future directions

Thomas Heege EOMAP GmbH & Co. KG Seefeld/Germany



© EOMAP, 2018

#### Role of SDB

Reconnaissance

various SDB approaches depending on quality requirements

Independent mapping capability

for unsurveyed, outdated or remote areas for highest quality requirements, independent level of confidence => fully physics based approach



## Diversity of SDB solutions

#### Satellite scene quality











© EOMAP, 2018













## QA/QC processing steps

#### • Pre-processing

Selection of appropriate satellite and airborne sensors,

Selection of appropriate recording / environmental condition (geometry, season, ..)

#### • Post-processing:

Tidal effects

Horizontal displacement with water depth through water refraction

Data cleaning: Manual / semi-automated interpretation

Cal/Val process if in-situ data are accessible

Creation of ISO conform metadata



## QA/QC processing steps

#### Image data processing: corrections and QC procedures

Classification of area of interest into land, cloud, water, breaking waves, .... Correction of effects of atmosphere Correction of effects of adjacency effects Correction of effects of sunglitter Correction of effects of water absorbers and backscatter Coupled seafloor albedo and water column thickness calculation Error propagation, uncertainty processing



#### EOMAP's physics based solution





© EOMAP, 2018

Image courtesy of the Centre for Spatial Environmental Research, University of Queensland)

# Impact of QA corrections in an automated state-of-the art workflow

Objective to demonstrate capabilities:

Independent site assessment

Independent level of confidence provision Transparency in SDB production mechanisms

| Sensor                                         |        | Workflow               | Control              |   |  |
|------------------------------------------------|--------|------------------------|----------------------|---|--|
| Sentinel-2 ×                                   | New    | Select sha             | allow and deep water | r |  |
| Input data                                     |        | Import sa              | itellite data        |   |  |
| 06 R039 T200LE 20180115T164328.zip             |        | Masking                |                      |   |  |
| Event directory                                |        | Adjacency              | y correction         |   |  |
|                                                |        | Atmosph                | ectrum retrieval     |   |  |
| D:\wx_output                                   |        |                        | th retrieval         |   |  |
|                                                |        |                        | ssing                |   |  |
| · ·                                            | 1020   | dina                   | ults                 |   |  |
| Ontions                                        |        |                        |                      |   |  |
| οριοιο                                         | LUU    | <i></i> g              |                      |   |  |
| Validation file                                | Please | a <b>nng</b><br>e wait |                      |   |  |
| Validation file                                | Please | e wait                 |                      |   |  |
| Validation file Tidal correction [m]           | Please | • wait                 |                      |   |  |
| Validation file Tidal correction [m] 0.0000    | Please | e wait                 |                      |   |  |
| Validation file Tidal correction [m] 0.0000    | Please | e wait                 |                      |   |  |
| Validation file Tidal correction [m] 0.0000    | Please | e wait                 |                      |   |  |
| Validation file Tidal correction [m] 0.0000  C | Guide  | <b>.</b>               |                      |   |  |



#### Satellite-Derived Bathymetry

Fully physics based processing <u>No</u> training datasets, <u>no</u> parameter tuning



Black to white: Depth from 0 down to 25m

#### NOAA bathymetric survey (survey date: 2014-2015) US Virgin Islands

Transect

#### 1km

Black to white: Depth from 0 down to 25m

#### SDB and MBES transect



© EOMAP, 2018 Fully physics based processing, <u>No</u> training datasets, <u>no</u> parameter tuning



## Impact of corrections in an automated workflow (Watcor-X)





Raw image scene, including clouds, haze, ...

Subsurface reflectance

Sea floor reflectance

#### Impact of restricted/wrong bottom reflectance model on depth retrieval





Subsurface reflectance output for pixelwise variable aerosol retrieval

Subsurface reflectance output for constant aerosol over whole scene: Atmospheric artefacts remain

#### Impact of variable aerosol retrieval versus constant AC correction on depth retrieval





Fully automated SDB processing with Watcor-X (version 2018)

Results from shore to -15m depth for different regions in comparison to Zones Of Confidence (ZOC)

| Area        | ZOC A | ZOC B | ZOC C |
|-------------|-------|-------|-------|
| Puerto Rico | 53%   | 76%   | 95%   |
| St Croix    | 36%   | 64%   | 96%   |
| St. Thomas  | 20%   | 38%   | 71%   |
| Jeddah      | 18%   | 35%   | 85%   |

Vertical uncertainty, Cl95: ZOC A: 0.5m + 1% depth ZOC B: 1.0m + 2% depth ZOC C: 2.0m + 5% depth

| Datum der Szene | 1   | 2   | Klasse |
|-----------------|-----|-----|--------|
| 2018 02 17      | 85% | 93% | 1B     |
| 2018 08 11      | 71% | 84% | 1B     |
| 2018 03 29      | 81% | 91% | 2      |
| 2018 03 19      | 69% | 92% | 2      |
| 2017 12 24      | 33% | 53% | 2      |
| 2017 12 29      | 56% | 71% | 2      |
| 2018 02 02      | 61% | 78% | 2      |

... and impact on scene suitability



#### Forecast of uncertainty in an automated processing workflow



© EOMAP, 2018



## Autonomous SDB capability

#### Limitations on environmental conditions

| Parameters                            | Impacts                                                                                | Ideal conditions                                                              | Insufficient conditions                                   |
|---------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------|
| Water clarity                         | Maximum depth,<br>vertical uncertainties,<br>object detection                          | Secchi Disc Depth > 15m                                                       | Secchi Disc Depth <5m                                     |
| Spatial distribution of water clarity | Full seafloor search,<br>maximum depth,<br>vertical uncertainties,<br>object detection | Water clarity in simlar ranges within or the study site                       | Highly heterogeneous water clarity                        |
| Seafloor                              | Full seafloor search, vertical uncertainites                                           | Sediment, coral or hardbottom<br>surfaces with none to<br>moderate vegetation | Dense Kelp forest, very dark<br>(often vulcanic) rocks    |
| Seastate                              | Vertical uncertainties, object detection                                               | No to little seastate and resuspension of materials                           | Strong wave interactions                                  |
| Tides                                 | Vertical uncertainties                                                                 | Tidal heights are homogenous for the site                                     | Varying and unknown spatial distribution of tidal heights |



# Autonomous SDB capability

#### Specifications for satellite recordings

| Parameters        | Impacts                                                              | Ideal specs                                              | Insufficient specs                                    |
|-------------------|----------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|
| Satellite sensors | Maximum depth,<br>vertical uncertainties,<br>noise                   | 8band WorldView-2, Sentinel-<br>2, hyperspectral sensors | WorldView-1, IRS,                                     |
| Geometry          | Sunglint                                                             | Sun and sensor in similar azimuth and angle              | If >5% reflectance is returned from the water surface |
| Cloud & haze      | Full seafloor search,<br>vertical uncertainites,<br>object detection | No cloud or haze                                         |                                                       |
|                   |                                                                      |                                                          |                                                       |
|                   |                                                                      |                                                          |                                                       |





#### Future directions to improve SDB

Multi-image processing, algorithms improvements

Improving concepts for integrated approaches

Online processing capabilities and portals



Transparency in SDB production, quality forecasts, uncertainty

**Introductions** At IHO / Regional Commission meetings, CBSC meeting

Understanding & SDB forum, SDB day 2018/2019 Exchange

TrainingSDB production and integration training<br/>(e.g. EOMAP HQ 2019, Indonesia 2020)<br/>eLearning: Online processing course & support

CertificationQualification levels for hydrographersfor SDB generation, integration, charting



#### THANK YOU



© EOMAP, 2018

heege@eomap.de / hartmann@eomap.de / wettle@eomap.com

