CHS Level of Confidence Approach for SDB

René Chénier, Khalid Omari and Mesha Sagram

Canada

Canadian Hydrographic Service Regions

- CHS is mandated to support safe navigation in Canadian waters
- Responsible for providing up-to-date, authoritative and standardized hydrospatial information

Canadian Arctic : 3.7 Million km² of water Atlantic Central Pacific Quebec The Oceans (Pacific, Arctic, and Atlantic), and internal waters, cover a surface area of 7.1 million km² Total coastline 243,700 km

2

Current Paper Chart Coverage

Canada

Category Zone of Confidence (CATZOC)

Only 14 % of the Arctic is considered as adequately surveyed	CATZOC	Survey Quality	Position Accuracy	Depth Accuracy
	A1	Modern	± 5 m + 5% depth	0-10 m: 0.6 m 10-30 m: 0.8 m
She attantes and	A2 & B	Adequate	± 20 m (A2) ± 50 m (B)	0-10 m: 1.2 m 10-30 m: 1.6 m
ELCANTING.	С	Insufficient	± 500 m	0-10 m: 2.5 m 10-30 m: 3.5 m
			1	A CONTRACTOR

Source: DFO-Science, CHS / MPO-Science, SHC chsinfo.XNCR@dfo-mpo.gc.se June / Juin 2017

Chart White Space

Chart 5510 (Povungnituk, QC). White areas in Chart depicted above are unsurveyed.

Chart 5510 overlaid on RapidEye image (July 12, 2011).

Proposed Low Impact Shipping Corridors

Canadian Space Agency (CSA) Funding

- Government Related Initiatives Program (GRIP)
 - Extraction of accurate Coastline and Intertidal Zones
 - Satellite Derived Bathymetry (SDB)
 - $\circ\,$ Change Detection

Pêches et Océans Canada

- Shipping Corridor Determination
- Data Integration in CHS Processes and Products

Data Utilization and Application Plan (DUAP)

- RCM Data Simulation
- $\,\circ\,$ Shorelines, Intertidal Zones and Tidal Height
- Charting and Surveying Priorities
- Synthetic Aperture Radar (SAR) Bathymetry

7

isheries and Oceans

Oceans Protection Plan

- Multibeam and LiDAR surveys for priority and high risk areas across Canada
- Support for remote sensing projects

Fisheries and Oceans Pêches et Océans Canada Canada

Study Site -Cambridge Bay

- The Canadian Arctic is where CHS has the most gaps in hydrographic surveys
- The study site is located in Cambridge Bay, Nunavut (69°07' N, 105°02' W)
- Cambridge Bay is a hamlet situated on Victoria Island

Dataset: Wordview-2 Stereo Pair

WorldView-2 stereo pair acquired on September 20, 2015 over Cambridge Bay

Survey Type	Year	Number of points
		(0-20 m)
Multibeam	2017	599,305
Multibeam	2015	1,265,263
Multibeam	2014	1,284,582
Lidar	1992	1193
LiDAR	1985	8953
	Total	3,159,297

A- All survey points B- Survey points from 0-20 m

Geometric Processing- Physical model

Mode	GCP	ICP	ICP RMS errors (m) X, Y,
U2	8	81	1.5, 1.4
U25	8	105	1.4, 1.5

•The accuracy of the Radarsat orbit: MDA guarantees 5 m with 90 % level of confidence.

The elevation ranges from 10 m to 1000 m

SDB Approaches Evaluated

- Photogrammetric 3D manual approach
 - Digital photogrammetric software SOCET SET
- Photogrammetric Automatic approach
 - PCI Geomatica -Semi-Global Matching (SGM) algorithm
- Empirical approach
 - o Multi-band approach
- Classification
 - o Random forest

Approaches Evaluated

Classification :

- A random forest decision tree classification was used
- Training areas were collected using the survey information
- Classes of depth of 0.5 m intervals were created using available survey points
- The random forest classification was applied to the multispectral bands (Red, Green, Blue, and Yellow)

Empirical - multi-band model (Lyzenga 1985)

- A Multi-band approach was selected , the multispectral bands used (Red, Green, Blue, and Yellow)
- 10% of the survey data were used for the creation of the model

Approaches Evaluated

Photogrammetric approach:

- Geometric model was computed using the Rational Polynomial Coefficients (RPCs)
- Additional tie points (~1000) were collected in order to obtain better relative accuracy between the images

Photogrammetry 3D Manual approach :

- Photogrammetrist visually extracted the isobaths at 1 m interval
- Light and tidal correction were done with survey points as a reference to determine the appropriate water depth

Photogrammetry Automatic approach:

- PCI Geomatics -Semi-Global Matching (SGM) algorithm
- Light refraction and tidal correction was applied

Results

For total extracted coverage

Approach	Coverage 0-20 m
A- 3D Manual Photogrammetry	100 %
B- Classification Random Forest	81 %
C- Empirical Multiband	59 %
D- Automatic Photogrammetry	39 %

Canada

Results – Total Coverage

The 3D Photogrammetric and Classification approaches accurately extracted depths up to 15 m

Canada

The International Hydrographic Organization (IHO) S-57 Standard

CATZOC Level	Depth Range (m)	Required Accuracy (± m)
A 1	0-10	0.6
Al	10-30	0.8
	0-10	1.2
A2 & B	10-30	1.6
0	0-10	2.5
C	10-30	3.5

Accuracy Assessment for individual SDB techniques

Results for individual SDB techniques in the common coverage area

SDB Method	LE90 (m) Depth Range								
	Bias (0–10 m)	0–10	0–2	2–4	4–6	6–8	8–10	10–14	
Empirical	-0.20	0.95	1.51	1.14	0.75	1.02	0.93	1.46	
Manual Photogrammetry	-0.58	1.58	1.51	1.68	1.35	1.38	1.19	1.76	
Automatic Photogrammetry	0.75	1.54	0.46	0.65	1.45	1.55	1.88	2.10	
Random Forest	-0.38	1.67	0.48	0.54	1.08	1.73	2.28	2.76	
Number of Points	38,773		765	2128	13,511	18,168	4201	359	

Empirical approach very close to meet the CATZOC A2 & B , 1.2 m

Dark Features (Benthic Environment)

Dark features, commonly caused by underwater vegetation, are of particular concern for the empirical approach as it confuses dark features with deep water

Homogeneous Bottom Types

Homogenous areas : For the **Photogrammetric Automatic approach**, within homogeneous areas **like sand**, the algorithm encounters difficulties with matching pixels, preventing a correlation from being achieved

Level of Confidence Approach

- The percentage of the overlap area captured by four, three and two agreeing techniques that agree within 1 m
- 81 % of the total common coverage agreed with at least 3 techniques

Number of Techniques Agreeing within 1 m	Approaches within Combination ¹	Overall Combination RMSE (m) (0–10 m)	Rank	% Coverage of Overlap Area ²
4	AP, EM, MP, RF	0.61	1	31
	AP, EM, RF	0.60	2	
3	AP, MP, RF	0.64	3	FO
	AP, EM, MP	0.69	4	50
	EM, MP, RF	0.80	5	
	AP, EM	0.63	6	
	AP, RF	0.70	7	
2	AP, MP	0.71	8	10
	EM, MP	0.82	9	15
	EM, RF	0.83	10	
	MP, RF	0.90	11	

Results of Level of Confidence Approach

Number of			LE90 (m)							
Techniques				Depth Range						
Agreeing within 1 m	Coverage %	Bias	0–10	0–2	2–4	4–6	6–8	8–10	10–14	
4	31	-0.10	1.01	1.21	0.85	0.85	0.98	1.27	1.00	
3	50	-0.19	1.26	1.23	0.90	1.14	1.28	1.25	1.24	
2	19	0.05	1.28	1.30	1.21	1.25	1.24	1.07	1.90	
4 and 3	81	-0.16	1.21	1.26	0.87	1.08	1.24	1.28	1.20	
All	100	-0.12	1.24	1.30	0.95	1.15	1.24	1.18	1.78	

Individual approaches

SDB Method	LE90 (m) Depth Range							
	Bias	0–10	0–2	2–4	4–6	6–8	8–10	10–14
Empirical	-0.20	0.95	1.51	1.14	0.75	1.02	0.93	1.46
Manual Photogrammetry	-0.58	1.58	1.51	1.68	1.35	1.38	1.19	1.76
Automatic Photogrammetry	0.75	1.54	0.46	0.65	1.45	1.55	1.88	2.10
Random Forest	-0.38	1.67	0.48	0.54	1.08	1.73	2.28	2.76

Bias was reduced

CATZOC B until 14 m for 81 % of the total coverage

Level of confidence approach ↓

Number of				LE90 (m)					
Techniques				Depth Range					
Agreeing within 1 m	Coverage %	Bias	0–10	0–2	2–4	4–6	6–8	8–10	10–14
4	31	-0.10	1.01	1.21	0.85	0.85	0.98	1.27	1.00
3	50	-0.19	1.26	1.23	0.90	1.14	1.28	1.25	1.24
2	19	0.05	1.28	1.30	1.21	1.25	1.24	1.07	1.90
4 and 3	81	-0.16	1.21	1.26	0.87	1.08	1.24	1.28	1.20 <
All	100	-0.12	1.24	1.30	0.95	1.15	1.24	1.18	1.78
+									- UanaO

SDB Confidence Level masks

Source Classification Diagram

CHS released its first chart (4955) with mention of SDB as a source

14.

Conclusion

- The 3D manual photogrammetric extraction was the approach that provided the most SDB coverage but is more time intensive and costly
- The empirical approach provided the best overall accuracy but is sensitive to dark features
- The photogrammetric automatic approach is not affected by dark features but its coverage is limited
- The classification provided good results until 15 m of water depth and is less sensitive to dark feature than the empirical approach

For CHS, the best approach would be a hybrid approach that would use the advantages of the different approaches. The **Level of Confidence Approach** provides an automated way of reducing the weakness of the individual approach and increases the accuracy and stability of the SDB model

Other advantages of the Level of Confidence approach are :

- •Creation of a mask (reduce time of QC to focus on the problematic areas),
- •Classification in different CATZOC categories (B & C),
- •Increases the confidence in the results (Reduce the SDB uncertainty)

SDB Sensor Selection

WorldView-2 / 2 m LE90: 0.88 m

Pléiades / 2 m LE90: 1.00 m

PlanetScope / 3 m LE90: 1.32 m

Landsat-8 / 30 m LE90: 2.04 m Canada

SPOT / 6 m LE90: 1.30 m

Sentinel-2 / 10 m LE90: 1.86 m

SDB Sensor Accuracy

Questions?

Key Contact: Rene.Chenier@dfo-mpo.gc.ca

References:

2019-René Chénier, Ryan Ahola , Mesha Sagram , Marc-André Faucher , Yask Shelat . Consideration of Level of Confidence within Multi-Approach Satellite Derived Bathymetry, ISPRS Int. J. Geo-Inf. 2019, Geo-Information <u>https://www.mdpi.com/2220-9964/8/1/48</u>

2018- Chénier, R.; Faucher, M.-A.; Ahola, R. Shelat, Y. Sagram, M. Bathymetric Photogrammetry to Update CHS Charts: Comparing Conventional 3D Manual and Automatic Approaches. ISPRS Int. J. Geo-Inf. 2018, 7(10), 395; <u>https://doi.org/10.3390/ijgi7100395</u>

2018- Chénier, R.; Faucher, M.-A.; Ahola, R. Satellite-derived bathymetry for improving Canadian Hydrographic Service charts. *ISPRS Int. J. Geo-Inf.* **2018**, *7*, 306, <u>doi:10.3390/ijgi7080306</u>. <u>https://www.mdpi.com/2220-9964/7/8/306</u>