## bluecoast consulting engineers

#### **Monitoring Coastal Change From Space**

Heiko Loehr<sup>1</sup> | Evan Watterson<sup>1</sup> | Matthew Harry<sup>2</sup> 14 May 2019

<sup>1</sup>Bluecoast Consulting Engineers

<sup>2</sup>NSW Department of Industry – Lands

A case study of applying satellite derived bathymetry in Australia

### Satellite Derived Bathymetry (SDB)









## Satellite Derived Bathymetry (SDB)

## Advantages

- Cost-effective
- Capturing large areas in one snapshot (instantly)
- Regular capture of imagery (no matter what)
- Gridded data -> high cross-shore and along-shore resolution
- Safe & risk free (**no vessels**, labour etc)
- Historic database of over 10 years
- ACCURATE!

# Limitations

- Requires clear water
- Cloud cover/ glare
- Surface waves/ wave breaking
- Shallow water (down to ~15m depth)
- Minimum image size (25 km<sup>2</sup>)





#### Pilot study: Can we use this technology in Australia?

#### Idea!

- How does this compare to typical survey data (accuracy/validation)?
  - Detect bathymetric changes between subsequent 'survey' dates?
    - Automation of analysis and standardised reporting!

- Why?
- Cost-reduction in monitoring of nearshore morphology
  - Monitoring more frequently and of greater spatial areas
    - Better understanding of our coastlines for coastal management & planning



#### Study Site: Gold Coast (QLD) - Tweed Heads (NSW)





**Pilot study datasets** 

## 1<sup>st</sup> July 2016 2x2 metres gridded satellite derived bathymetry (25 km<sup>2</sup> area)

# 21<sup>st</sup> July 2017 2x2 metres gridded satellite derived bathymetry (25 km<sup>2</sup> area)



#### 2016 Satellite Derived Bathymetry (2x2 metres)





#### 2017 Satellite Derived Bathymetry (2x2 metres)



CONSULTING ENGINEERS

#### **Comparison with typical survey: datasets**

- 24<sup>th</sup> May 2016 Single Beam Echo Sounder (SBES) survey
  - Captured 38 days prior to Satellited Derived Bathymetry
  - Survey transects every ~40 to 100 metres along-shore
  - Survey points every ~5 to 10 metres cross-shore
  - City of Gold Coast annual coastal survey
- <u>31<sup>st</sup> July 2017 SBES survey</u>
  - Captured 10 days after Satellited Derived Bathymetry
  - Same as above



- Bathymetry difference less than ~0.5 metres
- Some difference due to natural change between survey dates





## Statistical difference between SDB and SBES survey:

- Mean = 0.36 metres
- StDev = 0.46 metres
- RMS = 0.31 metres





Chainage (m)



- Differences between survey results minimal
- SDB was achieved down to ~12 metres depth
- SDB data gaps at river mouth (wave breaking & turbidity)



#### Morphological change over time



#### Bathymetric change between 2017 and 2016 SDB

- Automated spatial change analysis
- Change of key morphological features (e.g. nearshore sand bars)
- Clear evidence of cross-shore sediment transport
- Detailed analysis for specified 'compartments'



CONSULTING ENGINEERS

#### Bathymetric change between 2017 and 2016 SDB

Automated volumetric analysis results:



import ggis.ggis import ggls, ggis from PyQt4.QtCore import OFileInfo from ggis.analysis import QgsRasterCalculatorEntry, QgsRasterCalculator, QgsZonalStatistics from ggis.core import \* from processing.tools import \*

#Initialise QGIS
QgsApplication.setPrefixPath("C:\\Users\\220054\\Documents\\Projects\\SDB\\GIS", True) # Adjust it to your path
QgsApplication.initQgis()

#Select raster file

#rasterfile = qgis.utils.iface.mapCanvas().currentLayer().source() inpath = "C:UNserx\1220634\DocumentS\Projects\DoPNDataFreeDoMAN\" file1 = "SDB\_2016\SDB\_AUS\_ColdCosst\_EOMAP\_106701uv2\_236568\_2m\_AHD\_geotiff.tif" file2 = "SDB\_2017\SDB\_AUS\_ColdCosst\_EOMAP\_10721224628117018 235755 2m\_AHD\_geotiff.tif"

1(e2 = "SDB\_2017(SDB\_AUS\_G0(dC0as(\_E0MAP\_170721\_234626\_170716\_235725\_2m\_AHD\_g

layer1 = QgsRasterLayer(inpath + file1, file1)
layer2 = QgsRasterLayer(inpath + file2, file2)

| Compartment                                        | Total erosion (m <sup>3</sup> ) | Total accretion (m <sup>3</sup> ) | Net change (m³)<br>[(-) erosion/<br>(+) accretion] |
|----------------------------------------------------|---------------------------------|-----------------------------------|----------------------------------------------------|
| Letitia Spit                                       | -534,292                        | 615,600                           | 81,308                                             |
| Tweed River Entrance (including<br>Duranbah Beach) | -2,106*                         | 205,596*                          | 203,490*                                           |
| Point Danger                                       | -29,321                         | 23,088                            | -6,233                                             |
| Coolangatta to Bilinga                             | -1,182,248                      | 631,094                           | -551,154                                           |
| Tugun to Currumbin                                 | -212,699                        | 532,970                           | 320,272                                            |
| Total                                              | -1,960,665                      | 2,008,347                         | 47,682                                             |





#### Bathymetric change between 2017 and 2016 SDB

#### Automated volumetric analysis results:



#### Profile evolution:





# Can we use Satellite Derived Bathymetry to monitor morphological change?

Yes. Possibly even better than with typical survey data

(Due to cost-effectiveness and high spatial resolution (2m) in both cross-shore AND along-shore direction -> better representation of bathymetric features)



### **Key findings**

- SDB compares well to typical survey data
  - Differences in bathymetry were around 0.3 metres
- Data gaps where wave breaking occurred and water was not clear
- Assessing morphological change over time is possible



#### **Further developments**

- Automation of complete process from data capture to standardised report at regular intervals -> expert interpretation as add-on
- Subscription type service to clients at revolutional pricing
- Machine learning algorithms for detection and tracking of bathymetric 'features'
- Integration with other analysis and visualisation tools (e.g. <u>https://middleton-egfhp3bk5.now.sh/</u>)



## **Thank you! Any Questions?**



<u>Contact:</u> Heiko@bcoast.com.au

bluecoastconsulting.com.au

